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LElTER TO THE EDITOR 

Universality in the two-dimensional continuous spin model 

A D Bruce 
Department of Physics, University of Edinburgh, Edinburgh EH9 352, UK 

Received 3 July 1985 

Abstract. Monte Carlo methods have been used to analyse the critical behaviour of the 
d = 2  ‘border’ 44 model which, according to a recent series expansion study, violates 
expectations based upon universality. The results suggest that the model does, in fact, fall 
into the Ising universality class, at least as regards those parameters which characterise 
the critical point configurations of the ordering variable. 

In a recent paper Baker and Johnson (1984, to be referred to as BJ) have presented 
results setting a question mark beside the widely held view that the 44 (or ‘continuous 
spin’) model of phase transitions falls into the same universality class as the king 
(‘fixed length spin’) model. Specifically, high-temperature series expansions for the 
order-parameter susceptibility were analysed for a particular (‘border model’) member 
of the spectrum of 44 models, in space dimension d = 2, and found to yield a 
susceptibility exponent y close to 2, disturbingly different from the (exact) value 
appropriate to the d = 2 Ising model, yI = 1.75. The inference, drawn by BJ, of a failure 
of universality has since been questioned by Barma and Fisher (1984) who have 
identified a similar effect in two related d = 2 models (the Klauder and double-Gaussian 
models). These authors present convincing evidence that the effect is a manifestation 
of strong corrections to scaling, and that the asymptotic universal behaviour in these 
models is indeed Ising-type. They surmise that the behaviour of the 44 model might 
be explained in a similar vein. However, in a further communication, Baker and 
Johnson (1985) have questioned this proposition. They note, moreover, that their 
border model values for the indices y and v (the latter based upon an as yet unreported 
study) are consistent with one ofthe sets of indices (namely y = 2, v = g, p /  v = 7/2  = 8) 
identified by Friedan et al (1984) in a general study of two-dimensional systems 
possessing conformal invariance and unitarity. The issue remains controversial (Fisher 
and Barma 1985). 

In this paper the issue is addressed with the aid of a Monte Carlo (MC) study of 
the d = 2 border 44 model. The results, though not conclusive, support the conventional 
view, providing evidence that at least a subset of the (nominally universal) critical 
point parameters are indeed those of the Ising model. 

The 44 model to be studied is defined by the partition function 



L874 Letter to the Editor 

and 

W (  q5) = Aq5’+ Bq54. (IC) 

The sum on i extends over the L2 sites of a d = 2 square lattice; the sum on (U) extends 
over all pairs of neighbouring sites. Thus defined the model has three parameters. 
Given the arbitrariness of the scale of the q5 field one parameter is redundant and 
(following BJ) may be eliminated by imposing on A and B the constraint that the 
second moment of q5 with respect to the weight function e-w(d’ be unity. The border 
model, studied by BJ, is then defined by the further condition A = 0 which, given the 
first condition, implies B = 0.1 14 23 . . . . 

It is possible to implement a MC analysis of the q54 model in many different ways 
(cf Creutz and Friedman 1981, Cooper et al 1982). The strategy adopted here is as 
follows. The partition function ( l a )  is rewritten in the form 

where 

The function p‘O’(q5) is chosen to be that sum of two Gaussians which best approximates 
the true distribution p(q5)  of the local coordinate. (An initial guess as to the form of 
this function is subsequently refined on the basis of the computed form of p ( + ) . )  The 
two-stage updating scheme for a particular coordinate q5i is then: (i)  A new value q5I 
is selected from the distribution p “ ) ;  given the parameterisation of p(O’ this process 
may be effected immediately through standard random number generators. (ii) The 
new variable is accepted or rejected according to the standard Metropolis algorithm, 
applied to the effective configurational energy Se’. This MC scheme was used to study 
the border model at a variety of couplings C, and for systems of linear dimension 
L = 8, 16, 32 and 64, with periodic boundary conditions. The data upon which the 
following analysis are based were accumulated over approximately 80 h on the 
Edinburgh Distributed Array Processors. 

The form of analysis chosen draws upon the ideas of Swendsen (1982), Binder 
(1981), Bruce (1981) and others. Its key ingredient is a finite size scaling ansatz for 
the probability distribution Pr( M )  of the block variable (‘magnetisation’) M =  
L-d x i  q 5 i :  

P L ( M )  = Lp/”p’( Lp’”M, L””p , ,  L-”p3)  (3) 

where p1 and p3 denote, respectively, the thermal and leading irrelevant scaling fields. 
There are good reasons to believe (Bruce 1981) that, modulo the usual non-universal 
scale factors, the scaling function p’ should, like the critical indices ( p ,  v, U , .  . .), be 
specific to a universality class (though dependent upon the block boundary conditions: 
Binder (1981)). 

The analysis falls into three parts. Firstly we address the location of the critical 
point, and the limiting critical form of the distribution PL. The critical coupling C, 
may be determined as that value of C for which the ratio of moments MI“’= ( M Z )  of 
the PDF (3), 

GL = [3(M‘,Z’)2-M:4’]/2(Mf’)2 



Letter to the Editor L875 

attains, for large L, an L-independent fixed point value, G*, intermediate between its 
high-temperature (GL = 0) and low-temperature ( GL = 1) fixed point values. A series 
of relatively short MC runs at a variety of couplings yielded results establishing a 
preliminary estimate C, = 0.3286. A series of longer runs, upon which all subsequent 
analysis is based, were then performed at couplings in the vicinity of this preliminary 
estimate. The values of GL thus obtained (shown in table 1)  were analysed with the form 

(4b) GL = G*[ 1 + g ,L’ /” (  C - C,) + g,L-” + . . .] 

Table 1. Cumulant ratio GL for various lattice sizes L and couplings C. 

L 

8 
8 
8 

16 
16 
16 
32 
32 
32 
64 

C 

0.327 00 
0.328 51 
0.330 00 
0.327 50 
0.328 57 
0.329 50 
0.328 00 
0.328 57 
0.329 00 
0.328 57 

0.8758(5) 
0.8852(4) 
0.8945(4) 
0.893( 1 )  
0.905( 1 )  
0.915(1) 
0.903(3) 
0.916(2) 
0.924(4) 
0.92 5 (4) 

which follows from (3), given its presumed analyticity at C,  (Binder 1981). (The 
consistency of the neglect of terms quadratic in AC = C - C,, for the chosen C values, 
was confirmed with the aid of the studies of the C derivatives of the moments M p ’ ,  
described below.) The key results are C,= 0.3282(2) and G* =0.913(4) with a x2 of 
1.5 (for four degrees of freedom). The errors (which are correlated) represent one 
standard deviation. The corrections to scaling will be discussed later. We also defer 
discussion of the index l / v ;  at this stage we note only that the assigned values of G* 
and C, are, within the quoted errors, independent of whether this index is assigned 
its Ising value or left as a free parameter. The value of C, is significantly lower than 
that ( C ,  = 0.3300) assigned by BJ. The value of the fixed point moment ratio G* may 
be compared with that of the d = 2 Ising model. A separate MC analysis of the latter 
yielded G: = 0.916( 1 ) .  The close agreement between the two values is reflected more 
evocatively in the full probability distributions: figure 1 shows the critical point 
distributions for the two models, evaluated on an L = 6 4  lattice in each case. The 
accord is striking. The minor differences are presumably attributable to corrections to 
scaling: no attempt has been made to extrapolate to the L=oo limit. 

We turn, secondly, to the index P /  v, which may be conveniently determined from 
the ratio of moments RL’ Mp’/M(L’ for which we expect, given (3), 

( 5 )  
Fitting the observed border model values of RL (for which the statistical noise is 
helpfully low) to this form gave p /  Y = 0.128( ?::E;), and a critical coupling consistent 
with that assigned above, with a x2 value of 2 (for four DOF). Again the results (for 
the index and critical coupling) are, within error, insensitive to whether the index 1/ Y 
is fixed at its Ising value or left free. The quoted value of the index P /  v is consistent 

RL = r,,L-zp/u[ 1 + rlL1”( C - C,) + r,L-” + . . .I. 
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Figure 1. The magnetisation PDF for the d = 2 border 44 model (*) and for the Ising model 
(0) at their respective critical points. Each calculation was performed on a system of size 
L = 64. In each case the aggregate coordinate M has been scaled so that its variance is 
unity. (The functions are symmetric about M = 0.) 

with the Ising value ( p /  v), = 0.125, and markedly different from the value p /  v =&I 
reported to be consistent with the BJ series values for y and Y (Baker and Johnson 
1985). This result, and the accord on the critical point distributions reported above, 
together offer a strong indication that the border 44 model does, in fact, fall into the 
same universality class as the Ising model, at least as regards those quantities which 
characterise the critical point coarse grained configurations of the ordering variable, 
so that universality holds at least in the weaker form described by Suzuki (1974). 

To assess the claims of the strongest form of universality we turn, thirdly, to the 
index 1/ v. The values of this index suggested by the analyses of (4b) and ( 5 )  described 
above are markedly lower (0.83 and 0.92 respectively) than the Ising value (1/ v = 1). 
Though statistically significant (the x2 values which ensue if this index is fixed at its 
Ising value are markedly higher than those for the free fits reported above) these 
discrepancies should not, we believe, be taken at face value: equations (46) and (5) 
do not contain (and the fitting analysis would not support) corrections to the L”” 
scaling behaviour presumably essential to a trustworthy assignment of this index. It 
is preferable, rather, to appeal to values of the derivatives dMV’/dC, determined 
directly with the aid of the identity 

which follows immediately from equations ( l a )  and (1 6). Monte Carlo measurements 
of the derivatives for n = 2 and 4, determined in this way, were combined with those 
of the moments themselves to yield the quantity (chosen for its low statistical error) 

s 1 d M r ’  1 dM?’ 
‘-MY’ d C  Mf)  d C  

for which equation (3) implies an expansion 

SL = SOL’/”[ 1 + s ,L ’ /” (  c - C,) + s*L--” + . . .I. (76) 
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Fitting with this form yielded the result 1 /  v = 1.01(3) in close accord with the Ising 
value. Our confidence in this result is, however, considerably less than the nominal 
error would suggest, for three reasons. Firstly the associated value of the critical 
coupling C,  = 0.3275 is somewhat lower than that indicated by the analyses already 
discussed: imposing the (previously determined) value C, = 0.3282 yielded the result 
1/ v = 0.95( l ) ,  which is, in fact, consistent with 6;’s most recently reported results 
(Baker and Johnson 1985). Secondly, in this analysis, in contrast to those discussed 
above, the corrections to scaling proved ill determined. The results cited were obtained 
with the index w assigned the value suggested by the earlier analyses, to which we 
shall shortly return. Thirdly the quality of the fit (reflected in a x 2  value of 5.05 for 
five DOF) is somewhat less satisfactory than that of the fitted representations of (4b) 
and (5 ) .  Evidently the situation as regards the index v remains equivocal. 

Finally, we consider the corrections to scaling entering equations (4b) and (5 ) .  In 
both instances the fitting analyses yielded a value for the index w close to 1.3. This 
value lies suggestively close to that ( U  =$) which Nienhuis (1982) has suggested may 
be appropriate for the d = 2 Ising universality class (although the associated corrections 
to scaling need not always manifest themselves in the simple power law fashion 
suggested in (4b) and (5): cf Barma and Fisher 1984). It is noteworthy also that, for 
a given L, the size of the correction-to-scaling terms in equation (46) is larger for the 
border model than it is for the Ising model by an order of magnitude (and, incidentally 
and understandably, of opposite sign): the scale of length (correlation length or system 
size) at which ‘asymptotic’ behaviour begins to be discernible must be correspondingly 
larger. This observation is simultaneously illuminating and disconcerting: it suggests 
that the troublesome features of the border model may indeed (as conjectured by 
Barma and Fisher 1984) lie in anomalously large corrections to scaling; at the same 
time it sets a worrying question mark (which the existing data do not allow us to 
dispel) beside the domain of acceptability of expansions such as (46). Nevertheless, 
the balance of the evidence assembled here supports the view (at least as regards G* 
and P /  v) that the universal characteristics of this asymptotic regime are indeed those 
of the Ising model. 

The author acknowledges helpful communications from G A Baker and M E Fisher. 
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